Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 250: 121016, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134857

RESUMO

Nitrogen (N) compounds can occur in water resources from natural and anthropogenic activities. It is ideal that these contaminants be removed before water consumption. As water quality has been affected by increased salinity and pH variation, more advanced and robust technologies such as electrodialysis (ED) can be considered for simultaneous desalination and pollutant removal. In this context, the removal of N-species (NO3-, NO2-, NH4+, and CH4N2O) from brackish water by ED was investigated for different feed water quality, considering increased salinity (0 - 10g/L NaCl) and pH variation (3 - 11), under limit current density (LCD) at fixed electric potential condition. The applied electric potential (5 - 25V) under, at, and over the LCD at fixed electric potential and dynamic current density (DCD), as a percentage of LCD (0.4 - 1.2), were analyzed to improve the process. In addition, energy efficiency in the form of specific energy consumption (SEC) and current efficiency (CE) were assessed for ED at fixed electric potential and DCD. The results showed that, at extreme pH of the feed water, the removal of NO2- and NH4+ can be affected, while NO3-was the most stable compound with pH variation. An increase in feed water salinity just slightly impacted the removal of N-compounds, due to the similar characteristics of the ions in the water. The increase in electric potential at fixed electric potential or DCD increased the removal and molar flux of N-compounds. However, operating over the LCD increased the SEC of the ED process while changes in removal were not significant. DCD procedures resulted in higher CE and shorter run time of the experiments. Therefore, ED proved to be a suitable treatment technique to produce fresh water due to the selective removal of the studied ions, especially at 15V (fixed electrical potential) and 0.8 LCD (DCD) related to removal, molar flux, and run time to achieve guidelines.


Assuntos
Compostos de Nitrogênio , Dióxido de Nitrogênio , Íons , Eletricidade , Nitrogênio , Águas Salinas
2.
Membranes (Basel) ; 13(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37103854

RESUMO

This study investigated the predictability of forward osmosis (FO) performance with an unknown feed solution composition, which is important in industrial applications where process solutions are concentrated but their composition is unknown. A fit function of the unknown solution's osmotic pressure was created, correlating it with the recovery rate, limited by solubility. The osmotic concentration was derived and used in the subsequent simulation of the permeate flux in the considered FO membrane. For comparison, magnesium chloride and magnesium sulfate solutions were used since these show a particularly strong deviation from the ideal osmotic pressure according to Van't Hoff and are, thus, characterized by an osmotic coefficient unequal to 1. The simulation is based on the solution-diffusion model with consideration of external and internal concentration polarization phenomena. Here, a membrane module was subdivided into 25 segments of equal membrane area, and the module performance was solved by a numerical differential. Experiments in a laboratory scale for validation confirmed that the simulation gave satisfactory results. The recovery rate in the experimental run could be described for both solutions with a relative error of less than 5%, while the calculated water flux as a mathematical derivative of the recovery rate showed a bigger deviation.

3.
Sci Total Environ ; 884: 163738, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116805

RESUMO

Present knowledge about the fate of persistent and mobile (PM) substances in drinking water treatment is limited. Hence, this study assesses the potential of fixed-bed granular activated carbon (GAC) filters to fill the treatment gap for PM substances and the elimination predictability from lab-scale experiments. Two parallel pilot filters (GAC bed height 2 m, diameter 15 cm) with different GAC were operated for 1.5 years (ca. 47,000 BV throughput) alongside rapid small-scale column tests (RSSCT) designed based on the proportional diffusivity (PD) and the constant diffusivity (CD) approaches. Background dissolved organic matter (DOM) and a set of 17 target substances were investigated, among them 2-acrylamido-2-methylpropane sulfonate (AAMPS), adamantan-1-amine (ATA), melamine (MEL) and trifluoromethanesulfonic acid (TFMSA). Nine substances were predominantly present in the drinking water used as pilot filter influent (frequencies of detection above 80 %, median concentrations 0.003-1.868 µg/L) and their breakthrough behaviors could be observed: TFMSA was not retained at all, four substances including AAMPS and ATA reached complete breakthrough below 20,000 BV, three compounds were partially retained until the end of operation and oxypurinol was retained completely. The comparable PM candidate and DOM removal performances of both GAC aligns with their very similar surface characteristics and elemental compositions. The agreement of results between RSSCT with the pilot-scale filters were substance specific and no superior RSSCT design could be identified. However, CD-RSSCT provide a conservative removal prediction for most studied compounds. MEL adsorption was significantly underestimated by both RSSCT designs. Using the criterion of a carbon usage rate (with respect to 50 % breakthrough) below 25 mgGAC/Lwater for an economic retention by fixed-bed GAC filters, five (out of nine) substances met the requirement.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Purificação da Água/métodos , Matéria Orgânica Dissolvida , Adsorção
4.
Membranes (Basel) ; 11(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673190

RESUMO

Saline groundwater (SGW) is an alternative water resource. However, the concentration of sodium, chloride, sulphate, and nitrate in SGW usually exceeds the recommended guideline values for drinking water and irrigation. In this study, the partial desalination performance of three different concentrated SGWs were examined by pressure-driven membrane desalination technologies: nanofiltration (NF), brackish water reverse osmosis (BWRO), and seawater reverse osmosis (SWRO); in addition to one electrochemical-driven desalination technology: membrane capacitive deionisation (MCDI). The desalination performance was evaluated using the specific energy consumption (SEC) and water recovery, determined by experiments and simulations. The experimental results of this study show that the SEC for the desalination of SGW with a total dissolved solid (TDS) concentration of 1 g/L by MCDI and NF is similar and ranges between 0.2-0.4 kWh/m3 achieving a water recovery value of 35-70%. The lowest SECs for the desalination of SGW with a TDS concentration ≥2 g/L were determined by the use of BWRO and SWRO with 0.4-2.9 kWh/m3 for a water recovery of 40-66%. Even though the MCDI technique cannot compete with pressure-driven membrane desalination technologies at higher raw water salinities, this technology shows a high selectivity for nitrate and a high potential for flexible desalination applications.

5.
Membranes (Basel) ; 9(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443491

RESUMO

Forward osmosis (FO) has rarely been investigated as a treatment technology for industrial wastewaters. Within this study, common FO model equations were applied to simulate forward osmosis treatment of industrial wastewaters from the automobile industry. Three different models from literature were used and compared. Permeate and reverse solute flux modelling was implemented using MS Excel with a Generalized Reduced Gradient (GRG) Nonlinear Solver. For the industrial effluents, the unknown diffusion coefficients were calibrated and the influences of the membrane parameters were investigated. Experimental data was used to evaluate the models. It could be proven that common model equations can describe FO treatment of industrial effluents from the automobile industry. Even with few known solution properties, it was possible to determine permeate fluxes and draw conclusions about mass transport. However, the membrane parameters, which are apparently not solution independent and seem to differ for each industrial effluent, are critical values. Fouling was not included in the model equations although it is a crucial point in FO treatment of industrial wastewaters. But precisely for this reason, modelling is a good complement to laboratory experiments since the difference between the results allows conclusions to be drawn about fouling.

6.
Membranes (Basel) ; 8(3)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30041478

RESUMO

Forward osmosis (FO) is a membrane technology that uses the osmotic pressure difference to treat two fluids at a time giving the opportunity for an energy-efficient water and wastewater treatment. Various applications are possible; one of them is the application in industrial water management. In this review paper, the basic principle of FO is explained and the state-of-the-art regarding FO application in manufacturing industries is described. Examples of FO application were found for food and beverage industry, chemical industry, pharmaceutical industry, coal processing, micro algae cultivation, textile industry, pulp and paper industry, electronic industry, and car manufacturing. FO publications were also found about heavy metal elimination and cooling water treatment. However, so far FO was applied in lab-scale experiments only. The up-scaling on pilot- or full-scale will be the essential next step. Long-term fouling behavior, membrane cleaning methods, and operation procedures are essential points that need to be further investigated. Moreover, energetic and economic evaluations need to be performed before full-scale FO can be implemented in industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...